Experimental Evaluation of ‘Water Conditioner’ Performance

Rolf Eliassen and Rolf T. Skrinde


WATER is the most important and widely used commodity sold in this country today. Unfortunately, the chemical and physical characteristics of a particular water cannot be ideal for all purposes for which it must be used. Therefore, to make it suitable for industrial as well as domestic purposes, it must often be subjected to many complex and costly methods of treatment. Each municipality and each industry has a different situation, which may require modifications of the treatment process.

Scientific research and development are continuously progressing toward more efficient and less expensive processes of water treatment. The water works profession prides itself on utilizing the latest discoveries of science and engineering in the thousands of municipal and industrial treatment plants being built or improved each year to meet the increasing demands of modern technology for water of better quality in greater quantities. Evidence of the great strides made in keeping pace with latest research and scientific development is clearly indicated by the tremendous progress made since this Association was founded 76 years ago.

But there are many water consumers who are not willing to wait for scientific development. Their quest has been for a simple and inexpensive device which will solve the universal water-conditioning problem. They would rather take a shortcut and use a unit which they are willing to accept on the basis of unfounded pseudoscientific theory. Eliassen and Uhlig (1) have discussed many of the pseudoscientific claims made by manufacturers and salesmen. The statements are liberally sprinkled with technical-sounding terminology calculated to impress prospective buyers of “magic” water-conditioning units.

On Feb. 5, 1954, the Federal Trade Commission issued a complaint against the Evis Manufacturing Company of San Francisco, Calif., for false advertising. The magazine Science reported on this case (2) in an article entitled “Evis Water Conditioner.” The following is quoted from that article:

The company manufactures a product, the Evis Water Conditioner, which looks like an expanded pipe coupling with a vertical post integrally cast in the center of the internal chamber. The “conditioners” range in size from those that may be fitted into a 0.5-inch pipe to models
that are intended to be fitted into large industrial or marine pipes and in price from $25 for the smallest model to $3,700 for the largest bronze model. All models are made of either zinc-coated cast iron or bronze, and they are "intended to be fitted into water systems for the purpose of beneficially treating and conditioning water."

The task for the government in pressing its charges of false advertising was made more difficult by the fact that the respondents averred that treatment with the "conditioner" did not affect the chemical or physical properties of the water in any detectable way, but only the behavior of the water in use.

Hearings were held by a hearing examiner of the Federal Trade Com-

mission. These resulted in a formal order for dismissal of the complaint against the Evis Manufacturing Company on Apr. 26, 1956. On Dec. 31, 1956, however, the commission issued a subsequent order to the hearing examiner to reopen the case to receive further scientific evidence.

The authors of this article know of no scientific principle which could explain any successful action of a unit of this type. The authors agree with that portion of the second paragraph of the above quotation (2) from Science "that treatment with the 'conditioner' did not affect the chemical or physical properties of the water in any detectable way." But the authors question the validity of claims of the manufacturer of the Evis unit on the ability of this unit to "affect . . . the behavior of the water in use," as mentioned in the above quotation (2). The purpose of the work reported in this paper was to evaluate the effects of the Evis Conditioner on the behavior of waters of different types by scientific experiments conducted in accordance with standard water works practice.

The more common screw-type Evis Water Conditioner, shown in Fig. 1, allows direct contact between the unit and the water. Another model of the conditioner which merely clamps on the outside of the water pipe is pictured in Fig. 2. In this case the water supposedly being "conditioned" does not even come into contact with the unit! Two of the screw-type conditioners were purchased on the open market by the authors in order to conduct tests on the behavior of the waters in use. After the tests, one of the units was sawed in half in order to examine the interior. A photograph of one half is shown in Fig. 3. The threaded connections of this unit had begun to rust quite noticeably during its short period of use for these studies.
Claims by Evis Water Conditioner Manufacturer

The sales promotional campaign of distributors of the Evis Water Conditioner is based upon claims (3–9) of soap savings, reduced laundry water requirements, reduced corrosion of metals, improved taste and odor of drinking water, prevention of scale formation in water works structures and boilers, removal of old scale and rust already formed, reduced cost of heating water, elimination of harshness of water to the hands, improved agricultural irrigation, improved food flavors, and other supposed benefits. Many of these claims have been investigated previously by competent and unbiased research workers, but their results have not been published in technical journals. The work reported herein does not constitute a complete evaluation of all of the claims made by the manufacturer of the Evis Water Conditioner, but merely examines some of the claims in the light of comparisons between the behavior of Evis-treated waters and untreated waters in tests which are important and well established in the water works profession.

In setting up the test installation care was taken to eliminate electrical disturbances from the Evis Water Conditioner in accordance with the recommendations (3) of the manufacturer, who has stated: "The most important single rule which applies to all Evis installations is—make sure that the piping system carrying Evis-ized water is free from electrical disturbances throughout its length. When this simple rule is followed the Evis always performs at its top efficiency because the delicate change of molecular organization established by Evis-izing is then freed from the interference of electric currents."

Effect of Metallic Cations

Manufacturer's claims. The manufacturer claims that the Evis device "makes most hard waters behave 'Tame!'" (4); that "Evis conditions hard water by improving its physical characteristics by use of a Special Processed Metal. Nothing is added, no beneficial natural minerals are removed!" (4); that "gives 'soft results' simply by changing the disposition of natural forces already in water.

Laboratory studies. Ethylenedia-aminetetraacetic acid and its sodium salts form chelate complexes with metal cations. This complexing action is the basis of the EDTA test for water hardness. Results of EDTA hardness tests on Evis-treated Cambridge tap water, as compared with plain Cambridge tap water, are summarized in Fig. 4. As
Fig. 4. Effect of Evis Treatment on EDTA Hardness Test
Cambridge tap water with hardness added was used.

Fig. 5. Effect of Evis Treatment on pH of Detergent Solutions
Laundry detergent was added to Cambridge tap water, which was stirred for 10 min.
can be seen by the two curves, which can be considered identical within the precision of experimental measurements, there is no apparent change in “the disposition of natural forces” as evidenced by the complexing action in the two waters. Therefore, in this respect, the behavior of the metallic cations is indicated to be unchanged by the Evis Conditioner. It should also follow that soap-consuming and scale-forming properties would not be affected, as these properties are indicated by the EDTA test.

Laundry Water pH and Soap Requirements

Manufacturer’s claims. The manufacturer makes, among others, the following claim (6) regarding laundry applications in a test comparing Evis-treated with untreated wash water: “During the washing process there is a tendency for soap to lose some of its power. This can be measured by the pH factor. Tests were made at the beginning of the wash and even though less soap was used with Evis water, the pH was found to be the same as with raw water (9.5).”

Laboratory studies. The effect of increased or decreased soap consumption in laundry operations by water conditioning is an item of great importance in water works practice. Savings in soap consumption have justified the building of large softening plants in many areas of the United States. To test the effect of adding various amounts of a popular household laundry detergent (made up of alkyl benzene sulfonate and polyphosphates) to Evis-treated and normal Cambridge tap water, a series of controlled studies was carried out. The results of the effect of laundry detergent on the pH of wash waters are plotted in Fig. 5. As may be seen from these curves, the pH increased rapidly up to the amount of 1 g of detergent per liter, and leveled off to slowly increasing pH values thereafter. The two curves showing the effects in both the Evis-treated and untreated waters followed along the same line within the limits of experimental readings. These studies do not confirm the report that the pH would be the same when less soap was used, as stated by the manufacturer. The Cambridge tap water used in these studies had the chemical composition shown in Table I.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Quantity ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hardness (CaCO₃)</td>
<td>62</td>
</tr>
<tr>
<td>Total solids</td>
<td>114</td>
</tr>
<tr>
<td>Alkalinity (CaCO₃)</td>
<td>24</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>8</td>
</tr>
<tr>
<td>Chlorides</td>
<td>14</td>
</tr>
<tr>
<td>Sulfates</td>
<td>30</td>
</tr>
<tr>
<td>Sodium</td>
<td>9</td>
</tr>
<tr>
<td>Silica</td>
<td>4</td>
</tr>
<tr>
<td>Iron</td>
<td>0.1</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Standard Soap Consumption Test

Manufacturer’s claims. “The Evis converts most waters into smoother water. You can taste and feel the difference. And you can see the difference in the dishpan and the laundry! You get richer, longer-lasting suds from your favorite soaps and detergents, and it’s amazing how much farther they go in Evis Conditioned Water. Hundreds of users report greatly reduced soap requirements for every sort of household washing. A single box of soap goes a lot further than it does in ordinary tap water, in many types of waters soap efficiency has been increased 50%” (4). Another bulletin (6) states that “39.8%
more soap was required to form initial
suds in raw water.” In another bul-
letin (7) the claim is made: “If the
hardness of the raw water is less than
10 grains, Evis’ treatment alone saves
enough soap through increased effi-
ciency to justify bypassing the softener.
Over 10 grains, the softener should be
kept in service but used only for the
wash operation. (For domestic use
hardness-producing cations, and a
slight excess, the lather factor, permits
the formation of a stable foam upon
shaking. The foam must be stable for
a period of 5 min. Figure 6 compares
the effects of Evis treatment and of no
such treatment of Cambridge tap water
on the formation of soap suds which
remain stable for a specified interval of
time. As can be seen from the two
curves, the same number of milliliters
of standard soap solution was required
for the formation of suds in untreated
waters as in Evis-treated waters.

Laboratory studies. Such claims as
stated above can be analyzed for their
validity by the standard soap titration
test (10). This is a practical test as
well as one which gives accurate and
highly reproducible results. Sufficient
soap solution is added to the water
samples to precipitate all of the

![Diagram](image)

**Fig. 6. Effect of Evis Treatment on Soap Consumption**

*Cambridge tap water with hardness added was used.*
ference in "feeling," such as "smoothness" or "texture," between the raw and Evis-treated waters.

Laundring Efficiencies

Manufacturer's claims. "For fluffier, whiter, cleaner clothes Evis water is better for your laundry" (4). After a test on laundry wash water the manu-
facnter made the claim (6) that: "Before the wash water was drained at the end of the wash cycle another test was run. There was a consistently higher pH in Evis water which indicates that the soap had lost less of its power and that the soap curds were not in clothes where additional time and water would be required to rinse them out."

Laboratory studies. Cotton cloths were laundered in controlled tests using Cambridge tap water and various amounts of the household laundry detergent previously discussed. pH measurements were carefully made before and after washing uniform weights of cloth to show the effect of "conditioning" on the pH change in laundry waters, if any. The pH measurements at the end of the washing cycle, Fig. 7,

![Graph showing pH change over time](image)

Fig. 7. Effect of Evis Treatment on pH of Laundry Effluent

Laundry detergent was added to Cambridge tap water. Washing time was 20 min. can be compared with Fig. 5, which shows the pH before the washing action began. There was no significant change in the pH during the washing cycle. At the end of the cycle, the pH values of the Evis-treated waters were identical with those of the untreated waters within the limits of laboratory measurements. If pH changes show loss of power, as previously quoted from the manufacturer's claims (6),
then it can be concluded that there was no difference in "loss of power" during the laundry cycle when the water was passed through, the Evis Conditioner. The soap suds looked exactly the same in raw and "conditioned" waters in which similar amounts of soap were used. There was no observed difference in fluffiness or cleanliness between which means that less soap and more alkalies can be used. Scouring acid may be cut in half, and starch will take hold" (7). Laboratory studies described in one bulletin, quoted previously (6), led to the following claim:

A significant point in the laboratory report regarding the first rinse is that

The pH raised ten times out of ten with raw water and only seven times out of ten with Evis water. This would indicate that the alkali had been largely drained away with the wash water instead of adhering to the clothes.

A second rinse was needed ten times out of ten with raw water, and in every case the pH raised about three points. With the Evis water there was a pH rise in only two runs during the second rinse which is further proof that Evis-treated

![Graph showing the effect of Evis Treatment on pH of Laundry Rinse Water—First Rinse](image)

*Fig. 8. Effect of Evis Treatment on pH of Laundry Rinse Water—First Rinse*

Cambridge tap water was used. Rinsing time was 10 min.

Laundry Rinsing Action and Water Consumption

Manufacturer's claims. "Cold hard (any hardness) Evis Conditioned Water is highly suitable for rinsing, and will not only save heat and softening, but also at least one rinse water. Evis rinses stop caustic carryover, the pH raised ten times out of ten with raw water and only seven times out of ten with Evis water. This would indicate that the alkali had been largely drained away with the wash water instead of adhering to the clothes.

A second rinse was needed ten times out of ten with raw water, and in every case the pH raised about three points. With the Evis water there was a pH rise in only two runs during the second rinse which is further proof that Evis-treated...
water has a better rinsing ability. On the third rinse the raw water washes continued to show a pH rise in nine out of ten runs, but with Evis treatment there was nothing left to rinse out in eight of the runs, so the third rinse was run on only two runs and one of these failed to show a rise in pH. A fourth, and perhaps a fifth, rinse would have been required in nine out of ten raw water runs to completely rinse out the alkali. Raw water required 663% more rinses than Evis water.

The same bulletin (6) quotes a testimonial from the Sudsy Duds Washer in Lubbock, Tex., as follows: “It makes fine suds with any soap and the rinsing quality of the Evis conditioned water is far superior.”

Laboratory studies. Water shortages and forced curtailment of water use are tremendously important in the water works news these days, and any method which may save water should be thoroughly studied. The claims of water savings made above were based upon pH changes in laundry rinse waters. Therefore, pH determinations were made on rinse waters from washes containing various amounts of laundry detergent, using both untreated and “conditioned” Cambridge tap waters. As can be seen from Fig. 8, the pH was greatly reduced in the first rinse in both raw and Evis-treated waters. Contrary to the manufacturer’s claims, however, the pH was not higher in the untreated waters. The difference between the two waters was negligible and well within the limits of experimental error.

![Fig. 9. Effect of Evis Treatment on pH of Laundry Rinse Water—Second Rinse](image-url)

*Cambridge tap water was used. Rinsing time was 10 min.*
The second rinse, Fig. 9 showed that nearly all the alkali solution had been rinsed out of the cloths in both the untreated and Evis-treated waters. There was no significant pH difference in the second rinse due to the Evis Conditioner. The third rinse showed no change in pH in either the untreated or Evis-treated waters, indicating that a third rinse would not have been necessary in these tests using either water.

It can be concluded from these studies that there was no observed difference in rinse water effects due to Evis-treatment of water. From these tests there appears to be no basis for the claim that the Evis Conditioner saves on water consumption in laundry and cleaning operations.

**Scale Control**

*Manufacturer's claims.* “In Evis Processed Water, scale is prevented. Old scale washes out as Evis Processed Water extracts salts out of the old scale structure” (8). One bulletin (3) claims: “The Evis catalytically endows water with new colloidal properties. This change increases the scattering and dispersing effect upon fine particles of matter which may be contained in the water including fine particles added to the water, and also upon matter that takes form in the water, such as encrusting particles.” The same bulletin (3) states: “Scale is recognized as a porous sedimentary deposit—and when Evis-ized water is introduced to old scale it becomes penetrated. This penetration (not accom-
"WATER CONDITIONER" PERFORMANCE

Calcium Carbonate Structure Related to Precipitation and Scaling

Manufacturer’s claims. “The water which passes through the Evis Process Unit becomes affected in some of its physical behavior. Evis Processed water provides salt-free precipitated mineral matter, and scale is prevented because the flocs are not adherent. Such flocs are sufficiently dense to gravitate to lower levels. With unprocessed water, lime particles join to form groups or ‘flocs.’ These flocs contain water films, are jelly-like, and tend to be adhesive to metals. With Evis processed water lime particles join to form tighter flocs or granules. The heavy flocs act like small grains of sand, which do not form scale” (9).

Laboratory studies. The significance of any theory must be evaluated by per-
formance tests. A clue to the flocculent or granular structure of precipitates can readily be obtained by measuring the filtration characteristics of lime precipitates formed in Evis-treated and untreated waters. Adherent flocs would filter much more slowly than the “granules . . . like small grains of sand” referred to in the above quotation (9).

Solutions of calcium carbonate were made up with Evis-treated and untreated waters. An excess of calcium carbonate was added to cause precipitation. The solutions were then filtered and the volumes of filtrate were measured with time. Results of these filtration studies are shown in Fig. 11. It may be observed that the density of calcium carbonate buildup on the filter paper resulting in loss of filter action was the same with both Evis-treated and untreated waters. It follows that the granular nature of the calcium carbonate was the same in both waters. These tests indicate that there was no physical difference in the calcium carbonate precipitate due to the Evis Conditioner.

Conclusions

On the basis of the foregoing laboratory studies on the behavior of water “conditioned” by the Evis Water Conditioner, the following conclusions may be drawn:

1. The behavior of the water was not changed with respect to the complexing of calcium or magnesium by EDTA.

2. “Conditioning” did not affect the pH values of water used for laundering, either before or after the washing cycle.

3. During laundering operations the amount of soap required to produce stable suds was not affected by “conditioning” in the Evis unit.

4. The Standard Methods soap hardness test was not affected by this type of “conditioning” of waters of various degrees of hardness.

5. “Conditioning” did not affect the pH of rinse waters, and therefore no saving of rinse water was accomplished.

6. “Conditioning” did not affect the rate of solution of substances commonly found in hard-water scales.

7. No effects were noted in some of the pertinent physical characteristics of calcium carbonate as the result of “conditioning” in the Evis unit.

References


